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Abstract: The discrete memoryless state-dependent relay channel (SD-RC) is considered in this study. Two main
cases are investigated: SD-RC with non-causal channel state information (CSI) and SD-RC with causal CSI. In each
case, the SD-RC with partial CSI at the source and the relay is considered. As special cases it includes three
different situations in which perfect CSI is available: (i) only at the source, (ii) only at the relay and (iii) both
at the source and the relay. For the non-causal situation, the authors establish lower bound on capacity
(achievable rate) of the SD-RC, using Gel’fand-Pinsker coding at the nodes informed of CSI and compress-and-
forward (CF) strategy at the relay. Using the Shannon’s strategy and CF relaying, the authors derive lower
bound on capacity of SD-RC in the causal case. Furthermore, in order to compare their derived bounds with
the previously obtained results, which are based on the decode-and-forward (DF) strategy, the authors
consider general Gaussian relay channel (RC) with additive independent and identically distributed Gaussian
state and noise, and obtain lower bounds on capacity for the cases in which perfect CSI is available non-
causally at the source or at the relay. They also present cases in which their lower bounds outperform DF-
based bounds, and can achieve rates close to the upper bound. For causal case, a numerical example of the
binary fading Gaussian RC with additive noise is provided.
1 Introduction
Owing to wide range of applications, recently investigation of
communication strategies for state-dependent channels has
received considerable attention [1]. In state-dependent
channels, channel state information (CSI) can be available
at the nodes causally or non-causally. When the transmitter
knows CSI causally, the input to the channel at each time
instant depends only on the past and the present CSI,
whereas, in the non-causal case, the transmitter knows in
advance the realisation of the entire state process from the
beginning to the end of the block.

Causal channel state information at the transmitter
(CSIT) can be assumed for example in wireless fading
channels where the receiver estimates instantaneous state of
the channel and sends it back to the transmitter via a
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feedback link [1]. Shannon [2], for the first time,
established the capacity of a state-dependent memoryless
single-user channel whose states are independent and
identically distributed (i.i.d) and CSI is causally known to
the transmitter. Shannon showed that the capacity of this
channel is equal to the capacity of an ordinary discrete
memoryless channel with the same output alphabet and an
extended input alphabet (i.e. X jSj:S and X are state and
input alphabets, respectively). In fact, optimal code for this
channel is constructed over the alphabet of all mappings
from S to X defined as Shannon’s strategies, and as
Shannon showed in [2], by adding a physical device in
front of the channel depends on the message to be sent
and the current state, capacity of this channel is achieved.

Non-causal CSIT can be considered in the context of
computer memory with defects as the location of defective
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cells. Gel’fand and Pinsker [3], characterised the capacity of
the state-dependent single-user channel with non-causal
CSIT by a coding scheme, which is called Gel’fand-Pinsker
(GP) coding. Costa [4] applied GP results to the Gaussian
channel with additive interference, known as non-causal
CSIT, and showed that known interference does not
reduce capacity [Costa’s coding is also called dirty paper
coding (DPC)].

Much research interests has recently been devoted to
multiuser models with both causal and non-causal CSI [1,
5–7]. Among state-dependent multiuser models [8–10],
some results have also been obtained for the relay channel
(RC), recently [6, 7, 11–17].

The classical RC (state-independent) was first introduced
in [18], and then extensively studied in [19]. Two basic
coding strategies for RC were proposed in [19]: decode and
forward (DF), and compress and forward (CF) strategy.
The capacity of some special classes of the RC such as
degraded relay channels (DRC) [19], semi-deterministic
RCs [20, 21] and RCs with orthogonal components [22]
have been established. Moreover, RC with delay [23],
relay-broadcast channels [24, 25] and RC with private
messages [26] have been investigated. Recent applications
of relaying in wireless networks have revived the interest in
studying relay networks [27–29].

In [7], the capacity of the discrete memoryless degraded
state-dependent relay channel (SD-RC) has been derived,
where the source and relay have access to identical causal
CSI. The capacity achieving strategy in [7], consists of the
extension of Shannon’s strategy [2] and using DF scheme
[19] at the relay. Based on the DF strategy for the RC, in
[30] a lower bound on the capacity of T-node relay
network ((T 2 2) relay nodes, one transmitter and one
destination) in the case where the source and the relays
have access to non-causal and identical CSI has been
established.

One of the most important issues in the state-dependent
multiuser models is whether CSI is known symmetrically
(to all the nodes) or asymmetrically (to only some of the
nodes). Asymmetric knowledge of CSI may happen when
only some of terminals equipped with cognition capability
permits them to know the state of the channel.
Asymmetric non-causal CSI in RC has been considered in
[11, 13], where CSI has been known non-causally to the
source or to the relay. Hence, only source or relay can
combine the GP coding and the DF scheme. In [12] we
have considered state-dependent cooperative relay-broadcast
channel with asymmetric causal CSI and have established
the capacity region of the degraded version of the channel.
In [15], lower and upper bounds on the capacity of SD-
RC where source and relay do not have identical CSI have
been derived for four different classes (instantaneous,
causal, delay-less, relaying with unlimited look ahead).
Recently, achievable rates for a class of Gaussian RCs with
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interference, which is known non-causally only to the
source, have been derived using different coding strategies
[16, 17].

In most of the previous works on SD-RC, only the DF
strategy (or Partial DF (PDF)) has been considered.
Conventional DF (or PDF) strategies are based on
decoding the whole message (or part of it) by the relay. So,
the relay node cooperates with the transmitter to send the
decoded part to the destination. In the case that the
channel from the source to the relay is remarkably better
than the direct link between the source and the destination,
the DF strategy is beneficial [22]. But, when the channel
from the source to the relay is worse than the direct link or
even when these two links are similar in average, DF
scheme cannot be helpful and another scheme is needed.
In a completely different approach known as CF strategy
[19], relay compresses the received sequence (without
decoding any part of the transmitted message), re-encodes
and sends it to the destination.

In this paper, we focus on using the CF strategy in SD-RC
for two reasons. (i) We expect that in SD-RC, analogous to
the classical case, CF strategy outperforms the DF scheme
when the link between the source and relay is worse than
direct link, and can achieve rates close to the upper bound.
(ii) In the conventional DF (or PDF), the source must
know the relay input in order to have cooperation with it.
But, when CSI is asymmetric (e.g. for the case where relay
is only informed), the source cannot exploit the CSI.
Hence, it does not know what the relay exactly sends and
this introduces some loss in the coherence gain, which we
would expect to achieve in the DF strategy, and as it has
been shown in [13], although codeword splitting has been
used in their scheme, their DF-based lower bound cannot
be tight in the degraded Gaussian case. On the other hand,
in the CF scheme independent codebooks are used at the
source and the relay. Hence, using the CF approach in
asymmetric scenario seems to be reasonable and in this
paper in order to analyse this approach, we will consider
different situations.

We investigate SD-RC with both causal and non-causal
CSI in order to have a unified view. Furthermore, in order
to consider asymmetry in CSI, for both causal and non-
causal cases, we assume that the source and relay have
partial CSI (not necessarily identical). This assumption
includes three different situations in both causal and non-
causal cases: perfect CSI is known (i) only to the source,
(ii) only to the relay, and (iii) both to the source and the
relay. In the non-causal case we establish lower bound on
channel capacity (achievable rate) based on using GP
coding at the informed nodes and CF strategy at the relay.
In the causal case, using Shannon’s strategies at the
informed nodes and CF scheme at the relay, we establish
lower bound on capacity. We show that our results for the
causal case can be considered as a special case of non-causal
CSI and this is congruent with the relation between the
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expression for the capacity of the state-dependent single-user
channel with causal CSI [2], and its non-causal counterpart,
that is, the GP channel [3].

In order to compare our derived lower bounds with the
established DF-based bounds for the state-dependent
Gaussian RC with non-causal CSI, we consider those
obtained in [11] and [13], and we present cases in which
the CF approach outperforms the DF strategy. We also
provide a numerical example of the binary fading additive
white Gaussian noise (AWGN) RC, for causal case.

This paper is organised as follows. In Section 2, we present
the state-dependent RC and its related definitions. In
Section 3, we investigate the non-causal case. The causal
case is addressed in Section 4. Section 5 specialises the
results to the Gaussian case. The paper is concluded in
Section 6.

2 Preliminaries and definitions
To specify the discrete memoryless state-dependent relay
channel (DMSD-RC) depicted in Fig. 1, we define five
finite sets: (X1, X 2, Y2, Y3, S). A probability transition
matrix p(y2, y3jx1, x2, s) is also defined for all (x1, x2, y2,
y3, s) [ X1 � X2 � Y2 � Y3 � S. In this model, X1 and
X2 are the source and the relay inputs, respectively. Y3 and
Y2 are outputs of the destination and the relay, respectively.
We also assume that the source and relay know an i.i.d
noisy observation of states (partial CSI) drawn according
to a known probability distribution p(s, s1, s2), where s [
S, s1 [ S1, s2 [ S2. This model is illustrated in Fig. 1.
The CSI at the source (respectively at the relay) is perfect if
s1,n (respectively s2,n) is equal to sn for each n. The source
wants to transmit W to the destination with the help of
relay in n channel uses.

A (2nR, n) code for the SD-RC consists of a message set
W ¼ {1, . . . , 2nR}, where the message W is uniformly
distributed over the set W, a decoding function at the
destination: d3:Yn

3 !W and a sequence of encoding
functions at the relay where for non-causal CSI at the relay
defined as

f2,i : Yi�1
2,1 � Sn

2,1 ! X2 for i ¼ 1, . . . , n

Figure 1 State-dependent RC
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and for causal CSI as

f2,i : Yi�1
2,1 � Si

2,1 ! X2 for i ¼ 1, . . . , n

Definition 1: A rate R is said to be achievable for SD-RC,
if there exists a sequence of codes (2nR, n) with average
probability of error P (n)

e ¼ Pr(Ŵ = W )! 0 as n! 1.

In this paper, upper case letters (e.g. X ) are used to denote
random variables, and their realisation are shown by lower
case (e.g. x). We use kXk to denote the cardinality of finite
discrete set X . X

j
i indicates a sequence of random variables

(Xi , . . . , Xj). pX (x) denotes the probability mass function
(p.m.f.) of X on X , where occasionally subscript X is
omitted. An

e (X , Y ) denotes the set of e-strongly, jointly
typical n-length sequences based on p(x, y) which may be
indicated as An

e in the sequel, when it is obvious from the
context.

3 SD-RC with non-causal CSI
In this section we consider DM-SDRC whose non-causal
CSI is available partially at the source and the relay. In the
following, achievable rate for this channel is derived in
Theorem 1 based on combining the CF strategy at the
relay and GP coding at the source and relay. As special
cases, this theorem includes three different situations: The
perfect CSI is known non-causally (i) only to the source,
(ii) only to the relay and (iii) both to the source and the
relay. Hence, as by-products of the following theorem,
achievable rates for these three situations are provided.

Theorem 1: The capacity of the DMSD-RC with non-
causal CSI S1 and S2 available at the source and the relay,
respectively, is lower bounded by

C � R ¼ sup(I (U1; Ŷ2, Y3 j U2)� I (U1; S1)) (1)

s.t. I (U2; Y3)� I (U2; S2) � I (Ŷ2; Y2, S2 j U2, Y3) (2)

where the supremum is taken over all joint p.m.f.
on S � S1 � S2 � U1 � U2 � X1 � X2 � Ŷ2 � Y2 � Y3

of the form

p(s, s1, s2, u1, u2, x1, x2, y2, y3, ŷ2)

¼ p(s, s1, s2)p(x1, u1 j s1)p(x2, u2 j s2)

� p(y2, y3 j x1, x2, s)p(ŷ2 j y2, u2, s2) (3)

Proof: The proof of this theorem is based on using GP
coding both at the source and relay and using the CF
scheme at the relay. The proof appears in Appendix 1. A

Remark 1: Since the relay is informed of CSI S2, it tries to
use its knowledge for two different goals: (i) to cancel the
effect of channel’s state on its received signal (y2) based on
its knowledge of CSI, through acting as a decoder of the
source–relay link and (ii) to compress the CSI (along with
IET Commun., 2010, Vol. 4, Iss. 10, pp. 1174–1186
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its received signal, y2) and send the result to the destination
and let it to utilise partial CSI, where needed. As a simple
example, if y2 ¼ 0=, the relay can compress only the CSI
and send it to the destination. So the destination can utilise
this partial CSI. Hence, in general, in order to achieve the
two above-mentioned goals, we assume that in (3) ŷ2 is
conditioned on s2, besides u2 and y2.

Remark 2: By setting S1 ¼ S2 ¼ 0= and U1 ¼ X1, U2 ¼ X2

in (1)–(3), Theorem 1 reduces to the rate of classical RC in
[19, Theorem 6].

Now, we specialise Theorem 1 to the cases where perfect
CSI is available non-causally only at the source, only at the
relay, and both at the source and relay.

Corollary 1: The capacity of the DMSD-RC with non-
causal perfect CSI only at the source is lower bounded by

C � R ¼ sup(I (U1; Ŷ2, Y3 j X2)� I (U1; S)) (4)

s.t. I (X2; Y3) � I (Ŷ2; Y2 j X2, Y3) (5)

where the supremum is taken over p(s)p(x1, u1js)p(x2)
p(y2, y3jx1, x2, s)p(ŷ2jy2, x2).

Corollary 1 follows directly from Theorem 1 by setting
S1 ¼ S, S2 ¼ 0= and U2 ¼ X2 in (1)–(3), since the perfect
CSI is available only at the source, and only the source uses
GP coding. By setting S2 ¼ 0= it can be seen that ŷ2 and s,
given (y2, x2) become independent, which happens because
the relay is not informed of CSI in Corollary 1.

Corollary 2: The capacity of the DMSD-RC with non-
causal perfect CSI only at the relay is lower bounded by

C � R ¼ sup I (X1; Ŷ2, Y3 j U2) (6)

s.t. I (U2; Y3)� I (U2; S) � I (Ŷ2; Y2, S j U2, Y3) (7)

where the supremum is taken over p(s)p(x1)p(x2,
u2 j s)p(y2, y3 j x1, x2, s)p(ŷ2 j y2, u2, s).

Corollary 2 follows directly from Theorem 1 by setting
S1 ¼ 0=, S2 ¼ S and U1 ¼ X1 in (1)–(3), since the perfect
CSI is available only at the relay, and only the relay uses
GP coding.

Remark 3: By setting S1 ¼ S2 ¼ S in (1)–(3), a lower
bound on the capacity of DMSD-RC with non-causal
perfect CSI at both the source and relay is derived.

4 SD-RC with causal CSI
In many practical applications, the state sequence is not
known in advance, and can be known in a causal manner.
Causal asymmetric CSI model may fit to the wireless
Commun., 2010, Vol. 4, Iss. 10, pp. 1174–1186
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networks where some of the nodes could estimate the states
of the channel (e.g. fading coefficients) with high accuracy.
In this section, we consider DM-SDRC whose causal CSI
is available partially at the source and the relay. In the
following, achievable rate for this channel is derived in
Theorem 2 based on using the Shannon’s strategies at the
source and relay by defining extended alphabet sets and the
CF scheme. As special cases, this theorem includes three
different situations: the perfect CSI is known causally (i)
only to the source, (ii) only to the relay and (iii) both to the
source and the relay. Hence, as by-products of the
following theorem, achievable rates for these three
situations are also provided.

Theorem 2: The capacity of the DMSD-RC with causal
CSI S1 and S2 available at the source and the relay,
respectively, is lower bounded by

C � R ¼ sup I (U1; Ŷ2, Y3 j U2) (8)

s.t. I (U2; Y3) � I (Ŷ2; Y2, S2 j U2, Y3) (9)

where the supremum is taken over all joint p.m.f.
on S � S1 � S2 � U1 � U2 � X1 � X2 � Ŷ2 � Y2 � Y3

of the form

p(s, s1, s2, u1, u2, x1, x2, y2, y3, ŷ2)

¼ p(s, s1, s2)p(u1)p(x1ju1, s1)p(u2)p(x2ju2, s2)

� p(y2, y3jx1, x2, s)p(ŷ2jy2, u2, s2) (10)

and X1 ¼ f1(U1, S1), X2 ¼ f2(U2, S2), where f1(:) and f2(:)
are two arbitrary deterministic functions.

Proof: The proof of this theorem is based on combining
Shannon’s strategies and CF scheme. Since in this theorem
the source and the relay are informed of CSI causally, we
use Shannon’s strategies at both the source and the relay
with defining extended alphabet sets. Shannon’s strategies
transform the original channel into one, with auxiliary
inputs U1 and U2. The proof appears in Appendix 2. A

Remark 4: The expression for the achievable rate of
Theorem 2 can be interpreted as a special case of Theorem 1,
where U1 and U2 are independent of S1 and S2. This is
similar to the relation between the expression for the capacity
of the state-dependent single-user channel with causal CSI
[2], and its non-causal counterpart, that is the GP channel
[3]. Moreover, based on the mentioned goals in Remark 1,
we consider that in (10) ŷ2 is conditioned on s2, in addition
to u2, y2.

Now, we specialise Theorem 2 to the cases where perfect
CSI is available causally only at the source, only at the relay
and both at the source and relay.
1177
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Corollary 3: The capacity of the DMSD-RC with causal
perfect CSI only at the source is lower bounded by

C � R ¼ sup I (U1; Ŷ2, Y3jX2) (11)

s.t. I (X2; Y3) � I (Ŷ2; Y2jX2, Y3) (12)

where the supremum is taken over p(s)p(u1)p(x1ju1, s)p(x2)
p(y2, y3 j x1, x2, s)p(ŷ2 j y2, x2) and X1 ¼ f1(U1, S), where
f1(�) is an arbitrary deterministic function.

Corollary 3 follows directly from Theorem 2 by setting
S1 ¼ S, S2 ¼ 0= and U2 ¼ X2 in (8)–(10), since the perfect
CSI is available causally only at the source, and Shannon’s
strategy is used only at the source.

Corollary 4: The capacity of the DMSD-RC with causal
perfect CSI only at the relay is lower bounded by

C � R ¼ sup I (X1; Ŷ2, Y3 j U2) (13)

s.t. I (U2; Y3) � I (Ŷ2; Y2, S j U2, Y3) (14)

where the supremum is taken over p(s)p(x1)p(u2)p(x2 j u2, s)
p(y2, y3 j x1, x2, s)p(ŷ2 j y2, u2, s) and X2 ¼ f2(U2, S), where
f2(�) is an arbitrary deterministic function.

Corollary 4 follows directly from Theorem 2 by setting
S1 ¼ 0=, S2 ¼ S and U1 ¼ X1 in (8)–(10), since the perfect
CSI is available causally only at the relay, and Shannon’s
strategy is used only at the relay.

Remark 5: By setting S1 ¼ S2 ¼ S in (8)–(10), a lower
bound on the capacity of DMSD-RC with causal perfect
CSI at both the source and relay is derived.

5 State-dependent Gaussian RC
In this section in order to compare our derived lower bounds
with the established DF-based bounds, we provide some
examples for both non-causal and causal case.

5.1 Non-causal case

In this part we consider a general full-duplex Gaussian RC
with i.i.d. and additive Gaussian state and noise processes.
We consider the following cases: perfect Gaussian channel
state is known non-causally: (i) only to the source (ii) only
to the relay. We use the results obtained in Section 3 to
provide achievable rate in each case.
78
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The received signals at the relay and the destination at time
j ¼ 1, . . . , n for Gaussian SD-RC are given by

Y2j ¼ aX1j þ Z2j þ Sj (15)

Y3j ¼ X1j þ bX2j þ Z3j þ Sj (16)

where X1j and X2j are the signals transmitted by the transmitter
and the relay with individual average power constraints P1 and P2,
respectively. Positive constants a and b are known and denote the
channel gains. Z2j and Z3j , with powers N2 and N3, are i.i.d. and
independent white Gaussian noise components at the relay and
the destination, respectively. The components of S are also i.i.d.
and zero-mean Gaussian with E[S2

j ] ¼ Q.

Theorem 3: For the state-dependent general Gaussian RC
with non-causal perfect CSI at the source, the rate (see (17))

s.t. N̂ ¼
b2

b2P2

[N2A þ N3D þ (a � 1)2CQ] (18)

is achievable, where A W P1 þ Qþ 2s1s þ N3, B W P1 þ a2

Qþ 2as1s, C W P1(1� r2
1s), D W a2P1 þ Qþ 2as1s,�1 �

r1s, a � 1 and 0 � b � 1.

Proof: The detailed proof is given in Appendix 3. A

Theorem 4: For the state-dependent general Gaussian RC
with non-causal perfect CSI at the relay, the rate (see (19))

s.t. N̂ ¼
b2N2G þ E

F � G
(20)

is achievable, where A W P2 þ a2Qþ 2as2s, B W (ab� 1)2

(1� r2
2s), C W a2(1� r2

2s), D W (gþ b)=a, E W P2QC[P1

(D � ab((1=a)� b))2
þD2N3]þ a2b2P1N3A, F W P2(1�

r2
2s)(P1 þ N3 þ b2P2 þ Qþ 2bs2s), G W P2QB þ (P1 þ N3)

A and �1 � r2s, a, g � 1.

Remark 6: For Q ¼ 0 (state-independent channel),
Theorems 3 and 4 reduce to the achievable rate for CF
scheme in the standard interference-free Gaussian RC in [22].

Proof: The proof is similar to the proof of Theorem 3, except
that the relay is informed in this case. So, E[X1S] ¼ 0, U2 ¼

X2 þ aS (DPC), E[X2S] ¼ s2s ¼ r2s

ffiffiffiffiffiffiffiffiffi
P2Q

p
, where �1 �

r2s � 1 (GDPC) and Ŷ2 ¼ bY2 þ gS þ Ẑ (CSI is known
to the relay, and it can compress its knowledge and send it
max
r1s ,a,b

1

2
log

N̂ (b2P2 þ A)

(b2N2 þ N̂ )[(a� 1)2Qþ (BN3=C)]þ b2(aa� 1)2N3Q
(17)

max
r2s ,a,b,g

1

2
log 1þ P1

[b2(a2N3 þ N2)þ N̂ ]A þ P2QC(D � ab((1=a)� b))2

(b2N2 þ N̂ )(G � P1A)þD2P2QCN3

 !
(19)
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to the destination to partially cancel the CSI). b is an
arbitrary number and we also let g to be negative in order
to consider the role of relay as a channel state canceller
of the source–relay link. Therefore we should maximise
the rate in (19) subject to the condition (20), over
parameters �1 � a, r2s, g � 1. A

Now, we plot the derived achievable rates in (17) and (19),
for some examples to compare with the corresponding DF-
based lower and upper bounds for the state-dependent
general Gaussian case in [11, 13].

In Fig. 2, the lower bound in (17), and for comparison, the
lower and upper bounds in [11] are plotted for a ¼ 2, b ¼ 1,
P1 ¼ Q ¼ N3 ¼ N2 ¼ 10 dB against (P2=N3). This figure
shows that, although the source–relay link has a good
condition (a ¼ 2, b ¼ 1), but at high (P2=N3), CF-based
lower bound outperforms DF. If we set a ¼ b ¼ 1 in the
mentioned example, DF-based lower bound performs
worse than what has been shown in Fig. 2.

Then, in Fig. 3, we consider a ¼ b ¼ 1, Q ¼ N3 ¼ N2 ¼

10 dB and (P2=N3 ¼ P1=N3 ¼ SNR) varies. We can see that
in this case, CF outperforms DF. However, if we increase b
(improving multiple-access side of the RC) the CF-based
lower bound becomes very close to the upper bound at
high SNR (e.g. for b ¼ 4 the gap between the CF bound
and upper bound is 0.0413 bits at 30 dB, and for b ¼ 8,
gap ¼ 0.0110 bits at 26 dB), and can achieve almost tight
rates for the general Gaussian case. As illustrated in [11], at
high SNR, PDF-based lower bounds achieve the same
rates as DF-based bounds. So at high SNR our derived
bounds for these cases outperform PDF-based bounds, too.

In Fig. 4, the lower bound in (19), and also the lower and
the upper bounds in [13] are plotted for
a ¼ b ¼ 1, P1 ¼ P2 ¼ 20 dB and Q ¼ N2 ¼ 10 dB, as

Figure 2 Lower and upper bounds obtained by different
methods for state-dependent general Gaussian RC with
non-causal CSI known only to the source, a ¼ 2, b ¼ 1,
P1 ¼ Q ¼ N3 ¼ N2 ¼ 10 dB
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functions of SNR (P1=N3). It is observed that for SNR
values higher than 10 dB, CF outperforms the DF lower
bound and can achieve the rates nearly close to the upper
bound. In this case g is approximately equal to 2b, which
shows that the relay tries to achieve near optimality,
through cancelling the known state and then compresses
the results (i.e. Ŷ2 ¼ b(Y2 � S)þ Ẑ), and re-encodes it to
send to the destination.

In Fig. 5, the lower and upper bounds are plotted as
function of the interference power Q, for fixed value of the
power at the source and the relay when CSI is only
available at the relay. The curves are depicted for
a ¼ b ¼ 1, P1 ¼ 25 dB, P2 ¼ N2 ¼ 20 dB and N3 ¼ 10 dB.
This figure shows that CF-based lower bound is a
decreasing function of Q. We can see that CF-based

Figure 3 Lower and upper bounds obtained by different
methods for state-dependent general Gaussian RC with
non-causal CSI known only to the source, a ¼ b ¼ 1,
Q ¼ N3 ¼ N2 ¼ 10 dB

Figure 4 Lower and upper bounds obtained by different
methods for state-dependent general Gaussian RC with
non-causal CSI known only to the relay, a ¼ b ¼ 1,
P1 ¼ P2 ¼ 20 dB, Q ¼ N2 ¼ 10 dB
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achievable rate for very large values of Q is strictly positive
which illustrates that, even in presence of strong
interference, the transmission from the uninformed source
to the uninformed destination is possible. Furthermore, we
can see that for values of Q between 0 to 30 dB, DF
performs worse than the CF-based lower bound.

5.2 Causal case

As mentioned before, for the causal case optimal codes are
constructed over an extended input alphabets XkSk (or,
equivalently over the alphabet of mappings from S! X ).
So, if kSk is infinite in limit, it may cause some practical
problems for code construction. Hence, for simplicity in
evaluating the derived achievable rates in Section 4, we
consider binary channel states. In fact, we consider a binary
flat fading AWGN RC. So, the received signals at the relay
and destination at time j ¼ 1, . . . , n are given by

Y2j ¼ X1j þ Z2j (21)

Y3j ¼ SjX1j þ X2j þ Z3j (22)

where the parameters in (21)–(22) defined similar to the
definitions for (15)–(16). The only difference is in the
definition of Sj , where we assume i.i.d. on/off fading
coefficients with p(sj ¼ 1) ¼ 1� p(sj ¼ 0) ¼ a, here. Note
that Sj is a binary fading coefficient which influences on
the source–destination link. So if sj ¼ 1, the considered
model reduces to classic RC and if sj ¼ 0, it reduces to an
RC without direct link between source and destination. As
an example, we consider the case where causal CSI is
available only at the source. Hence, for the mentioned
scenario, we evaluate the achievable rate and its condition
in (11) and (12) by choosing input probability distribution
p(u1), p(x2), p(ŷ2 j y2, x2) and deterministic function X1 ¼

f1(U1, S). Similar to Section 5.1, we evaluate the related

Figure 5 Lower and upper bounds obtained by different
methods for state-dependent general Gaussian RC with
non-causal CSI known only to the relay, a ¼ b ¼ 1,
P1 ¼ 25 dB, P2 ¼ N2 ¼ 20 dB, N3 ¼ 10 dB
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terms for a Gaussian distribution. We take deterministic
function X1 ¼ f1(U1, S) ¼ SU1 and the following
probability distribution

p(u1) ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pP1=a
p exp

�u2
1

2P1=a

 !
(23)

Note that the chosen deterministic function f1 is not
necessarily optimal, but it results in an achievable rate for
the mentioned scenario. Let X2 � N (0, P2), which is
independent of U1 (because of CF scheme), and let
Ŷ2 ¼ Y2 þ Ẑ, where compression noise Ẑ � N (0, N̂ ) is
independent of S, U1, X2, Z2, Z3. Hence, we have

p(ŷ2 j y2) ¼ pẐ(ŷ2 � y2) ¼
1ffiffiffiffiffiffiffiffiffiffi

2pN̂
p exp

�(ŷ2 � y2)2

2N̂

 !

For the above specified parameters, we have

p(y3)¼ (1�a)
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(N3þP2)
p exp

�y2
3

2(N3þP2)

 !

þa
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p((P1=a)þN3þP2)
p exp

�y2
3

2((P1=a)þN3þP2)

 !

By calculating other probability distributions in (11) and
(12), we numerically evaluate the rate and its condition in
Corollary 3.

Moreover, for the considered model in (21)–(22),
following similar steps and based on CF scheme we also
calculate achievable rate for the case where the source
ignores its knowledge about CSI, and we denote it as
‘state-ignorant CF scheme’. Furthermore, to provide DF-
based achievable rate for the considered model in (21)–(22)
with causal CSI at the source, we exploit the derived

Figure 6 Lower bounds obtained by different methods for
the binary fading AWGN RC with causal CSI known only
to the source, a ¼ 0.5, N2 ¼ N3 ¼ 10 dB
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Table 1 Lower bounds (in bps/Hz) obtained by different methods for the binary fading AWGN RC, P1 ¼ 20 dB, P2 ¼ 10 dB,
N2 ¼ N3 ¼ 10 dB

a

Coding strategies
a ¼ 0.1 a ¼ 0.3 a ¼ 0.5 a ¼ 0.8 a ¼ 1

DF scheme with causal CSI at the source in (24) 0.65 1.22 1.50 1.69 1.72

CF scheme with causal CSI at the source 0.68 1.27 1.56 1.73 1.76

state-ignorant CF scheme 0.50 0.92 1.25 1.60 1.76
T
i

DF-based lower bound in [11, Corollary 2]. Note that this
lower bound is originally for SD-RC with non-causal CSI
available only at the source, but by setting U1 and S given
X2 to be independent in [11, Corollary 2] (i.e. setting
I (U1; SjX2) ¼ 0) and setting X1 ¼ f1(U1, S), this bound
reduces to the DF-based lower bound for SD-RC with
causal CSI only at the source, which becomes as follows

Rcausal
DF ¼ max min{I (U1; Y2 j X2), I (U1, X2; Y3)} (24)

where the maximisation is over p(s)p(x2)p(u1jx2).
X1 ¼ f1(U1, S) where f1(�) is an arbitrary deterministic
function. (Note that the bound in (24) is the same as the
derived DF-based lower bound in [15, Theorem 2], by
setting St ¼ S, Sr ¼ Sd ¼ 0=, V ¼ X2 in [15, Theorem 2]
(since here the case in which causal CSI known only to the
source is considered).)

Hence, to numerically evaluate the DF-based lower bound
in (24), we choose f1 as in the CF scheme (i.e.
X1 ¼ f1(U1, S) ¼ U1S), and choose p(u1) as in (23) and
X2 � N (0, P2), and maximising the rate over jointly
Gaussian probability distribution for p(u1, x2). Note that in
the DF scheme U1 and X2 are dependent. These computed
lower bounds (CF lower bound, DF lower bound in (24)
and state-ignorant CF lower bound) are plotted for
a ¼ 0:5, N2 ¼ N3 ¼ 10 dB against P1 ¼ P2 in Fig. 6.
Moreover, the results for different values of a and for
P1 ¼ 20 dB, P2 ¼ 10 dB, N2 ¼ N3 ¼ 10 dB are illustrated
in Table 1.

The results in Fig. 6 show that for these parameters, CF-
based bound outperforms DF-based bound for causal CSI.
For the assumed parameters in Table 1, DF and CF lower
bound works nearly the same. Also as it was excepted, by
knowing causal CSI at the source higher rates are achieved
with respect to the case where the source ignores its
knowledge about CSI in state-dependent channel.

6 Conclusion
We investigated SD-RC with causal and non-causal CSI to
gain a unified view. We considered SD-RC whose non-
causal CSI is available partially at the source and the relay.
We established achievable rate for this channel based on
the combination of the CF strategy with GP coding at the
Commun., 2010, Vol. 4, Iss. 10, pp. 1174–1186
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source and the relay. As special cases, this set-up includes
three distinct scenarios in which the perfect non-causal
CSI is available only at the source, only at the relay and
both at the source and relay. We also investigated similar
set-up for the SD-RC with causal CSI, and based on using
Shannon’s strategy and the CF scheme, a lower bound on
the capacity of the SD-RC with causal CSI for this set-up
was established. We showed that, similar to the relation
between the expression for the capacity of single-user state-
dependent channel with causal CSI, and its non-causal
counterpart, the expression for the achievable rate of SD-
RC with causal CSI is a special case of the non-causal
situation. We further illustrated our results for non-causal
case via Gaussian examples and presented some cases for
the general Gaussian RC with states, in which our derived
lower bounds outperform the DF-based lower bounds
derived in [11, 13], and can achieve rates nearly close to
the derived upper bounds in [11, 13]. For causal case, a
numerical example of the binary fading Gaussian RC with
additive Gaussian noise was provided. In future work we
intend to study the SD-RC with private messages.
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9 Appendix 1
9.1 Proof of Theorem 1

Outline of the proof : The proof is based on random coding
scheme which combines GP coding at the source and the
relay where partial CSI is available, and CF strategy at the
relay. We consider a block Markov encoding scheme where
a sequence of B 2 1 messages are transmitted in B blocks,
each containing n symbols. As B! 1, for fixed n, the rate
R(B � 1)=B is arbitrarily close to R.

Random coding: For any joint p.m.f. defined in (3):

1. Generate 2n(RþR0) i.i.d. un
1 sequences each with probability

p(un
1) ¼

Qn
j¼1 p(u1j). Label these un

1(w, m), where

w [ [1, 2nR] and m [ [1, 2nR0].

2. Generate 2n(R2þR02) i.i.d. un
2 sequences each with

probability p(un
2) ¼

Qn
j¼1 p(u2j). Label these un

2(t, k), where

t [ [1, 2nR2 ] and k [ [1, 2nR02 ].

3. For each un
2(t, k), generate 2nR̂2 i.i.d. ŷn

2 sequences
according to p(ŷn

2 j un
2) ¼

Qn
j¼1 p(ŷ2j j u2j), where for every

u2 [ U2, we define

p(ŷ2 j u2)

¼

P
s,s1,s2,u1,x1,x2,y2,y3

p(s, s1, s2, u1, u2, x1, x2, y2, y3, ŷ2)P
s,s1,s2,u1,x1,x2,y2,y3,ŷ2

p(s, s1, s2, u1, u2, x1, x2, y2, y3, ŷ2)

Label these ŷn
2(z j t), z [ [1, 2nR̂2 ].

4. Randomly partition the set {1, . . . , 2nR̂2 } into 2nR2 bins,
defined as B(t) where t [ [1, 2nR2 ].

Encoding (at the beginning of block i): We assume that the
channel state Sn

1 and Sn
2 in each block is non-causally

known to the source and the relay, respectively.

1. Let wi be the new message to be sent in block i.
The source looks for the smallest m such that
(un

1(wi , m), sn
1(i)) [ An

e (U1, S1). Denote this m with mi .
Based on the GP coding [3], there exists such an index mi,
if n is large enough and

R0 � I (U1; S1) (25)
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Based on the chosen mi, the source given un
1(wi, mi) in block i

transmits i.i.d. xn
1(wi) according to p(xn

1 j u
n
1, sn

1).

2. At the relay, assume that (ŷn
2(zi�1jti�1), yn

2(i � 1),
un

2(ti�1, ki�1), sn
2(i � 1)) [ An

e and zi�1 [ B(ti). Knowing ti

and sn
2(i), the relay seeks for the smallest k such that

(un
2(ti, k), sn

2(i)) [ An
e . Denote this k as ki. Based on the GP

coding, for sufficiently large n, there exists such an index
ki , if

R02 � I (U2; S2) (26)

Then the relay given (un
2(ti, ki), sn

2(i)) in block i, transmits
i.i.d. xn

2(ti) sequence, drawn according to the marginal
p(xn

2 j u
n
2, sn

2).

Decoding (at the end of block i):

1. The relay finds a unique index z such that
(ŷn

2(z j ti), yn
2(i), un

2(ti, ki), sn
2(i)) [ An

e . Using [19, Lemmas
1, 2] the probability Pz that there is no such z is bounded by

Pz � (P{(ŷn
2(zjti), yn

2(i), un
2(ti, ki), sn

2(i)) � An
e })2nR̂2

� (1� (1� e)2�n[8eþI (Ŷ2;Y2,S2jU2)])2nR̂2

�
(a)

exp(�(1� e)2nR̂2 2�n[8eþI (Ŷ2;Y2,S2jU2)])

where (a) follows from (1� mx)F
� exp(�mFx) for

0 � x � 1. Hence, we see that as long as

R̂2 . I (Ŷ2; Y2, S2jU2)þ 8e (27)

and for sufficiently large n, there exists such an index z with
arbitrarily high probability.

2. The destination finds unique (t̂i, k̂i) such that
(un

2(t̂i, k̂i), yn
3(i)) [ An

e . This step can be done with
arbitrarily small probability of error (i.e. t̂i ¼ ti , k̂i ¼ ki ), if
n is sufficiently large and

R2 þ R02 , I (U2; Y3) (28)

3. Knowing ti�1 and ki�1 (from the previous block), the
destination calculates a set of indices z such that

L(yn
3(i � 1)) W (ŷn

2(zjti�1), un
2(ti�1, ki�1), yn

3(i � 1))

[ An
e (Ŷ2, U2, Y3)

Then the destination declares that ẑi�1 has been sent in block
i 2 1, if ẑi�1 [ B(ti) > L(yn

3(i � 1)). We compute the
probability that zi�1 was chosen incorrectly. We write F c

i�1

for the event ‘all decisions in block i 2 1 were correct’.
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Thus we first bound E[kL(yn
3(i � 1)kjF c

i�1]

E[kL(yn
3(i � 1)kjF c

i�1] ¼ E[c(zi�1 j yn
3(i � 1)) j F c

i�1]

þ
X

z=zi�1

E[c(z j yn
3(i � 1)) j F c

i�1]

where

c(z j yn
3(i � 1))

¼
1 if (ŷn

2(z j ti�1), un
2(ti�1, ki�1), yn

3(i � 1)) [ An
e

0 otherwise

�

Now, for z = zi�1 in L(yn
3(i � 1)), Y3 and Ŷ2 are jointly

independent given U2. From [31, Chapter 15]

E[c(zjyn
3(i � 1))jF c

i�1] � 2�n[�6eþI (Ŷ2;Y3jU2)] z = zi�1

Since there are 2nR̂2 � 1 choices for z = zi�1

E[kL(yn
3(i � 1))kjF c

i�1] ¼ 1þ (2nR̂2 � 1)2�n[�6eþI (Ŷ2;Y3jU2)]

� 1þ 2nR̂2 2�n[�6eþI (Ŷ2;Y3jU2)]

As long as ti has been decoded correctly, an error is made
only if there is a z = zi�1 in L(yn

3(i � 1)) which its bin
number is ti . Thus, the error occurred in step 3, is

P(error in step3) � P{9z = zi�1such that z [ B(ti)

> L(yn
3(i � 1)) j F c

i�1}

� E
X

z=zi�1,z[L(yn
3
(i�1))

P(z [ B(ti))jF
c
i�1

2
4

3
5

� E[kL(yn
3(i � 1))kjF c

i�1]2�nR2

� (1þ 2nR̂2 2�n[�6eþI (Ŷ2;Y3jU2)])2�nR2

We see that as long as

R2 . R̂2 � I (Ŷ2; Y3jU2)þ 6e (29)

the destination can determine zi�1 reliably.

4. Finally, the destination uses both ŷn
2(zi�1jti�1) and

yn
3(i � 1), and declares that ŵi�1 and m̂i�1 have been sent

in block i 2 1, if there are unique indices such that

(un
1(ŵi�1, m̂i�1), yn

3(i � 1), ŷn
2(zi�1jti�1),

un
2(ti�1, ki�1)) [ An

e

Using [19, Lemma 2], with arbitrarily high probability
ŵi�1 ¼ wi�1 and m̂i�1 ¼ mi�1, if n is sufficiently large and

R þ R0 , I (U1; Y3, Ŷ2jU2) (30)
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Now combining (26)–(29) yields

I (U2; Y3)� I (U2; S2)� I (Ŷ2; Y2, S2jU2)� I (Ŷ2; Y3jU2)

¼H (Ŷ2jU2, Y3)�H (Ŷ2jY2, S2, U2)

¼
(a)

H (Ŷ2jU2, Y3)�H (Ŷ2jY2, S2, U2, Y3)

¼ I (Ŷ2; Y2, S2jU2, Y3)

where (a) follows from the fact that Ŷ2 is independent of Y3

given Y2, S2, U2.

Combining (25) and (30) also yields (1). Thus the rate in
(1) s.t. (2) is achievable. A

10 Appendix 2
10.1 Proof of Theorem 2

Outline of the proof : As already mentioned, we combine CF
strategy at the relay with Shannon’s strategies both at the
source and relay where partial CSI is available with
defining extended alphabet sets. Similar to the proof of the
previous theorem, a block Markov encoding scheme is
considered.

Random coding: For any joint p.m.f. defined in (10):

1. Generate 2nR i.i.d. un
1 sequences according to p(un

1) ¼Qn
j¼1 p(u1j). Index them as un

1(w) where w [ [1, 2nR].

2. Generate 2nR2 i.i.d. un
2 sequences each with probability

p(un
2) ¼

Qn
j¼1 p(u2j). Index them as un

2(t) where

t [ [1, 2nR2 ].

3. For each un
2(t), generate 2nR̂2 i.i.d ŷn

2 sequences each with
probability p(ŷn

2ju
n
2) ¼

Qn
j¼1 p(ŷ2j ju2j), where for u2 [ U2

and ŷ2 [ Ŷ2 we define

p(ŷ2ju2) ¼
X

s,s1,s2,u1,x1,x2,y2,y3

p(s, s1, s2)p(u1)p(x1ju1, s1)

� p(x2ju2, s2)p(y2, y3jx1, x2, s)p(ŷ2jy2, u2, s2)

(31)

Index them as ŷn
2(zjt) where z [ [1, 2nR̂2 ].

4. Randomly partition the set {1, . . . , 2nR̂2 } into 2nR2 bins
defined as B(t) where t [ [1, 2nR2 ].

Encoding (at the beginning of block i):

1. Let wi be the new message to be sent from the source in
block i. Upon receiving s1j(i) (the value of the known state
process at time j(1 � j � n) in block i at the source), the
source sends x1j(i) ¼ f1(u1j(wi), s1j(i)).
IET Commun., 2010, Vol. 4, Iss. 10, pp. 1174–1186
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2. At the relay assume

(ŷn
2(zi�1jti�1), yn

2(i � 1), un
2(ti�1), sn

2(i � 1))

[ An
e (Ŷ2, Y2, U2, S2)

and zi�1 [ B(ti). Upon receiving s2j(i) (the value of the
known state process at time j(1 � j � n) in block i at the
relay), the relay sends x2j(i) ¼ f2(u2j(ti), s2j(i)).

Note that, although the channel state S2 in block i is
causally known to the relay (at time j, knows only the CSI
S2 from time 1 to j), but the relay knows completely the
value of the state process of block i 2 1 (i.e. sn

2(i � 1)).

Decoding (at the end of block i):

1. The relay seeks a unique index z such that

(ŷn
2(zjti), yn

2(i), un
2(ti), sn

2(i)) [ An
e (Ŷ2, Y2, U2, S2) (32)

For sufficiently large n, similar to the proof of Step 1 in
Theorem 1, the probability that the relay can find such an
index z is arbitrarily high, if

R̂2 . I (Ŷ2; Y2, S2jU2) (33)

2. The destination finds a unique t̂i such that (un
2(t̂i),

yn
3(i)) [ An

e (U2, Y3). With arbitrarily high probability
t̂i ¼ ti, if n is sufficiently large and

R2 � I (U2; Y3) (34)

3. Knowing ti�1 (from the previous block), the destination
makes a list code of indices z such that

L(yn
3(i � 1)) W (ŷn

2(zjti�1), un
2(ti�1), yn

3(i � 1))

[ An
e (Ŷ2, U2, Y3)

Then the destination looks for a unique index ẑi�1 which
belongs to both the list code and the relevant bin, that is

ẑi�1 [ B(ti) > L(yn
3(i � 1)) (35)

Similar to the proof of Step 3 in Theorem 1, ẑi�1 ¼ zi�1 with
small enough probability of error, if n is sufficiently large and

R2 . R̂2 � I (Ŷ2; Y3jU2) (36)

4. Then using both ŷn
2(zi�1jti�1) and yn

3(i � 1), the
destination declares that ŵi�1 was sent in block i 2 1 if
there is a unique ŵi�1 such that

(un
1(ŵi�1), yn

3(i � 1), ŷn
2(zi�1jti�1), un

2(ti�1)) [ An
e (37)

This step can be done with small probability of error (i.e.
Commun., 2010, Vol. 4, Iss. 10, pp. 1174–1186
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ŵi�1 ¼ wi�1), if n is sufficiently large and

R , I (U1; Y3, Ŷ2jU2) (38)

Now (33), (34) and (36) result in

I (U2; Y3) � I (Ŷ2; Y2, S2jU2)� I (Ŷ2; Y3jU2)

¼ I (Ŷ2; Y2, S2jU2, Y3) (39)

Thus we see from (38) and (39), that the rate in (8) s.t. (9) is
achievable. A

11 Appendix 3
11.1 Proof of Theorem 3

The proof is based on the evaluation of the achievable rate
and its condition in (4) and (5) with an appropriate choice
of input distribution. Note that for the CF scheme similar
to the classical Gaussian RC [22], the best choice of the
probability distribution is not known. So, we evaluate the
related terms for a Gaussian distribution. If CF
outperforms the DF scheme for Gaussian distribution, it is
obvious that for the best choice of the probability
distribution CF outperforms DF too. Subsequently, X1 and
X2 are assumed to be zero-mean Gaussian with variances
P1 and P2 and E[X1X2] ¼ 0. Moreover, E[S2] ¼
Q, E[X2S] ¼ 0 (only the source is informed). Similar to
Costa’s initial DPC [4], the auxiliary random variable U1 is
defined as U1 ¼ X1 þ aS, but similar to [9, 11, 13],
arbitrary correlation is assumed between X1 and S which
is called generalised DPC to partially cancel the state.
Hence, E[X1S] ¼ s1s ¼ r1s

ffiffiffiffiffiffiffiffiffi
P1Q

p
where �1 � r1s � 1.

Ŷ2 ¼ bY2 þ Ẑ where b is a constant, and compression
noise Ẑ is a zero-mean Gaussian random variable with
variance N̂ , which is independent of S, X1, X2, Z2, Z3. S is
also independent of Z2 and Z3. Evaluation of (4) with the
specified parameters in the proof of Theorem 3 is as
follows (h(:) denotes differential entropy)

R , I (U1; Y3, Ŷ2jX2)� I (U1; S)

¼ I (U1; Y3jX2)þ I (U1; Ŷ2jX2, Y3)� I (U1; S)

¼ h(Ŷ2jX2, Y3)� h(Ŷ2jX2, Y3, U1)þ h(Y3jX2)

� h(Y3jX2, U1)� I (U1; S) (40)

Now, for the Gaussian distribution

h(Ŷ2jX2, Y3) ¼
1

2
log[(2pe)(E(Ŷ 2

2 )� E(Ŷ2E(Ŷ2jX2, Y3)))]

(41)

¼
1

2
log[(2pe)(E(Ŷ 2

2 )� E(Ŷ2(g1X2 þ g2Y3)))]

(42)
1185
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¼
1

2
log[(2pe)((a2b2P1 þ b2Qþ 2ab2s1s

þ b2N2 þ N̂ )� g2E(Ŷ2Y3))] (43)

where E(Ŷ2jX2, Y3) is the minimum mean-squared error
estimator of Ŷ2 given (X2, Y3).

Equality in (42) follows from the fact that for the Gaussian
distribution, linear estimator is optimal (i.e. E(Ŷ2jX2,
Y3) ¼ g1X2 þ g2Y3) [32]. Equality in (43) follows by

substituting E(Ŷ 2
2 ), E(Ŷ2X2) ¼ 0 and E(Ŷ2Y3) ¼ b(aP1 þ

(a þ 1)s1s þ Q) into (42).

Since from the orthogonality principle [32], g1 and g2 can
be found as

g1 ¼ �bg2

g2 ¼
b(aP1 þ (a þ 1)s1s þ Q)

P1 þ Qþ 2s1s þ N3

then, putting g1 and g2 into (43) yields (see equation at the
bottom of the page)
86
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Following the same procedure for evaluating other entropy
functions, and defining A W P1 þ Qþ 2s1s þ N3, B W P1 þ

a2Qþ 2as1s, C W P1(1� r2
1s), D W a2P1 þQþ 2as1s, we

can derive them as follows (see (44))

Substituting (44) into (40) yields (17). To obtain N̂ , we
should compute the constraint in (5) with the above
specified parameters similar to the above-mentioned
procedure for computing the entropy functions. The
derived entropy functions are

h(Ŷ2jX2, Y2, Y3) ¼ h(Ŷ2jX2, Y2) ¼
1

2
log[(2pe)N̂ ]

I (X2; Y3) ¼
1

2
log 1þ

b2P2

P1 þ Qþ N3 þ 2s1s

" # (45)

Putting (45) into (2), N̂ is derived as

N̂ ¼
b2

b2P2

[N2A þ N3D þ (a � 1)2CQ]

which completes the proof of Theorem 3. A
h(Ŷ2jX2, Y3) ¼
1

2
log (2pe) b2N2 þ N̂ þ

b2[(a � 1)2(QP1 � s2
1s)þ N3(a2P1 þ Qþ 2as1s)]

P1 þ Qþ 2s1s þ N3

 !" #

h(Ŷ2jX2, Y3, U1) ¼
1

2
log (2pe) b2N2 þ N̂ þ

b2(aa� 1)2N3CQ

(a� 1)2CQþ BN3

 !" #

h(Ŷ2jX2, Y3) ¼
1

2
log (2pe) b2N2 þ N̂ þ

b2[(a � 1)2(QP1 � s2
1s)þ N3(a2P1 þ Qþ 2as1s)]

P1 þ Qþ 2s1s þ N3

 !" #

h(Y3jX2, U1) ¼
1

2
log (2pe) (a� 1)2 QC

B
þ N3

� �� �

h(Y3jX2) ¼
1

2
log [(2pe)A]

I (U1; S) ¼
1

2
log

B

C

� �

(44)
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